ORTHOPHOTO PRODUCTS / SERVICES

DIGITAL ORTHOPHOTO & STEREO IMAGERY

ATLIS’s Orthophotos are acquired using patented true color RGB and NIR technology to produce an accurate, visual representations of our earth. ATLIS’s orthophoto products are used amongst an array of vertical markets, providing endless solutions to save valuable time and money. Using innovative technology, true metric systems, and rigorous quality control measures, ATLIS has the capabilities to acquire and process accurate geospatial imagery and elevation data to solve almost any mapping requirement.

Increasing value to ATLIS’s Orthophoto’s is our unique simultaneous acquisition of accurate elevation data using innovative LIDAR technology. This process ensures the most accurate representations of the earth’s surface, creating a comprehensive “As-Surveyed” dataset in today’s most rapidly changing environments such as mines, construction sites, and urban environments.

ACQUIRE

+ 5cm to 50cm Stereo Imagery
+ Optional “As-Surveyed” LiDAR
+ Photo Control Survey
+ Fixed Wing, UAV, and Satellite Platforms Available

PROCESS

+ RapidOrtho - 1-3 Week Turnaround
+ Comprehensive Color Balancing
+ Available DEM, DTM, and Contours
+ Available Planimetric Feature Collection
+ Available TrueOrtho’s

DELIVER

+ GeoTIFF, ECW, SID, or JPEG2000
+ ESRI, MapInfo, CAD, and more
+ WMS/WFS Streaming Services
+ Secure Web Portal Access
+ Available Subscription Services
ORTHOPHOTO PRODUCTS/SERVICES

UNDERSTANDING IMAGE RESOLUTIONS

In todays world of geospatial data, consumers have many imagery choices available. It is important to understand orthophoto accuracies, pixels resolutions, and the different acquisition platforms available in order to understand the best fit for your project. ATLIS acquires imagery from fixed wing, UAV, and satellite platforms, providing you with un-biased, and budget minded orthophoto solutions.

0.30m Orthophotography

Acquired from higher altitudes with fixed wing aircraft, and now from Satellite, 0.30m orthophotography is an affordable solution for the following:

Feature Identification:
- Forested Areas
- Hydrology
- Road & Rail Infrastructure
- Buildings
- Mines & Quarries

Common Applications:
- Municipal/Rural Planning
- Building Identification
- Land Cover Analysis
- Forestry Management
- Change Detection

0.15m Orthophotography

A great higher resolution option that allows for better visibility of smaller ground features. Also available is LiDAR which can be acquired with densities of about 5 p/m².

Feature Identification:
- Parking Lot Detail
- Culverts
- Power Poles and Lights
- Fences & Decks
- Landscaping Details

Common Applications:
- Topographic / Plan Mapping
- Impervious Surface Modelling
- By-Law Inspections
- City Planning
- Feature Identification

0.075m Orthophotography

Ultra-High resolution imagery with available as-surveyed LiDAR of 30+ p/m² makes this orthophotography perfect for custom survey and engineering projects.

Feature Identification:
- Traffic signage
- Manholes and Catch Basins
- Road & HWY Surface Integrity
- Structure and Roof Conditions
- Curb Heights

Common Applications:
- Civil Engineering
- Asset Management
- Stormwater Management
- Utility and Pipeline Management
- 3D Modelling

Processing Options Available:

RAPID Ortho

ATLIS’ RapidOrtho is an efficient and cost effective way to acquire, produce and deliver orthophoto’s in time constrained environments such as emergency response missions. Delivery is 1-3 weeks from acquisition and automated seamlines for general mapping purposes.

STANDARD Ortho

Standard Ortho’s are a the most common, traditional orthophoto produced today. This orthophoto processing option yields higher accuracies, more consistent color balancing, and manual seamline edits to eliminate distortional errors cause in areas around bridges, buildings, or of high relief.

TRUE Ortho

ATLIS’ True Orthophoto’s raises the bar with rigorous processing by correcting for above ground features to eliminate building lean, and increase user visibility of more ground features, providing users with optimized horizontal accuracy of derived products mapped from the orthophoto.